Deep Belief Nets in C++ and CUDA C: Volume 1: Restricted Boltzmann Machines and Supervised Feedforward Networks

Price: $49.95 $39.73
Product prices and availability are accurate as of 2016-09-23 02:51:44 EDT and are subject to change. Any price and availability information displayed on http://www.amazon.com/ at the time of purchase will apply to the purchase of this product.
You Save: $10.22 (20%)
Availability: In Stock
Add to Cart
Usually ships in 24 hours
CERTAIN CONTENT THAT APPEARS ON THIS SITE COMES FROM AMAZON SERVICES LLC. THIS CONTENT IS PROVIDED 'AS IS' AND IS SUBJECT TO CHANGE OR REMOVAL AT ANY TIME.

Manufacturer Description

News flash... If anyone would prefer reading these books in Korean, Volume 1 is now available from a South Korean publisher, with Volumes 2 and 3 available soon: http://www.acornpub.co.kr/book/dbn-cuda-vol1 Deep belief nets are one of the most exciting recent developments in artificial intelligence. The structure of these elegant models is much closer to that of human brains than traditional neural networks; they have a ‘thought process’ that is capable of learning abstract concepts built from simpler primitives. A typical deep belief net can learn to recognize complex patterns by optimizing millions of parameters, yet this model can still be resistant to overfitting. This book presents the essential building blocks of the most common forms of deep belief nets. At each step the text provides intuitive motivation, a summary of the most important equations relevant to the topic, and concludes with highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. Source code for all routines presented in the book, and the DEEP program which implements these algorithms, are available for free download from the author’s website. NOTE... The source code available for free download includes all of the code listed in the book, along with some libraries of related routines. Complete code for the DEEP program is not included; this code is enormous, as it includes many Windows-only interface routines, screen display code, and so forth. Users who wish to write their own DBN programs are responsible for implementing their own hardware/OS interface, while using my supplied code for the mathematical calculations.

Write a Review