Fundamentals of Artificial Neural Networks

Price: $45.00
Product prices and availability are accurate as of 2016-12-08 06:55:50 EST and are subject to change. Any price and availability information displayed on http://www.amazon.com/ at the time of purchase will apply to the purchase of this product.
Availability: In Stock
Add to Cart
Usually ships in 24 hours
CERTAIN CONTENT THAT APPEARS ON THIS SITE COMES FROM AMAZON SERVICES LLC. THIS CONTENT IS PROVIDED 'AS IS' AND IS SUBJECT TO CHANGE OR REMOVAL AT ANY TIME.

Manufacturer Description

As book review editor of the IEEE Transactions on Neural Networks, Mohamad Hassoun has had the opportunity to assess the multitude of books on artificial neural networks that have appeared in recent years. Now, in Fundamentals of Artificial Neural Networks, he provides the first systematic account of artificial neural network paradigms by identifying clearly the fundamental concepts and major methodologies underlying most of the current theory and practice employed by neural network researchers.Such a systematic and unified treatment, although sadly lacking in most recent texts on neural networks, makes the subject more accessible to students and practitioners. Here, important results are integrated in order to more fully explain a wide range of existing empirical observations and commonly used heuristics. There are numerous illustrative examples, over 200 end-of-chapter analytical and computer-based problems that will aid in the development of neural network analysis and design skills, and a bibliography of nearly 700 references.Proceeding in a clear and logical fashion, the first two chapters present the basic building blocks and concepts of artificial neural networks and analyze the computational capabilities of the basic network architectures involved. Supervised, reinforcement, and unsupervised learning rules in simple nets are brought together in a common framework in chapter three. The convergence and solution properties of these learning rules are then treated mathematically in chapter four, using the "average learning equation" analysis approach. This organization of material makes it natural to switch into learning multilayer nets using backprop and its variants, described in chapter five. Chapter six covers most of the major neural network paradigms, while associative memories and energy minimizing nets are given detailed coverage in the next chapter. The final chapter takes up Boltzmann machines and Boltzmann learning along with other global search/optimization algorithms such as stochastic gradient search, simulated annealing, and genetic algorithms.



This book uses tools from nonlinear systems theory to provide a comprehensive foundation for the theory of neural networks. The emphasis is on computational capabilities and learning abilities of neural networks. The unified perspective of nonlinear systems leads to a clear understanding of various architectures and learning methods, and the two chapters on learning provide valuable insight. In addition to the most common feed-forward networks, the book analyzes radial basis function networks, classifier networks, clustering networks, and various models of associative memory. The book is intended to be used for a first-year graduate course. The required background includes basic topics in mathematics, such as probability and statistics, differential equations, linear algebra, multivariate calculus, as well as some knowledge of state systems, Boolean algebra, and switching theory.

Product Features

Used Book in Good Condition

Write a Review